Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The high-pressure form of cadmium vanadate, $\mathrm{CdV}_{2} \mathrm{O}_{6}$

Alexei A. Belik, ${ }^{\text {a }}$ Andrei V. Mironov, ${ }^{\text {b }}$ Roman V. Shpanchenko ${ }^{\text {b* }}$ and Eiji Takayama-Muromachi ${ }^{\text {a }}$

${ }^{\text {a }}$ National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan, and
${ }^{\text {b }}$ Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
Correspondence e-mail: shpanchenko@icr.chem.msu.ru

Received 13 March 2007
Accepted 9 April 2007
Online 14 June 2007
The crystal structure of a new high-pressure modification of cadmium divanadium hexaoxide, $\mathrm{CdV}_{2} \mathrm{O}_{6}$, was refined from X-ray single-crystal data. It contains zigzag chains of edgesharing VO_{6} octahedra. Octahedra in adjacent chains share corners and form corrugated layers. Octahedrally coordinated Cd atoms, which lie on twofold axes, are situated between the layers. The columbite-like structure results in a strong distortion of the CdO_{6} octahedra which may be stabilized only at high pressure.

Comment

Complex vanadium (V) oxides have received renewed interest as electrode materials and catalysts. A number of compounds with the general formula $M V_{2} \mathrm{O}_{6}(M=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$, Zn and Cd) have been studied in the last decade (Rao \& Palanna, 1996; Fuentes et al., 1999; Wei et al., 2005, 2006). Among these compounds, $\mathrm{CuV}_{2} \mathrm{O}_{6}$ (Cao et al., 2006) and $\mathrm{CdV}_{2} \mathrm{O}_{6}$ (Chen et al., 2004) have been shown to be promising cathode materials for rechargeable lithium batteries. Numerous $M \mathrm{~V}_{2} \mathrm{O}_{6}$ oxides exist at ambient pressure (Rao \& Palanna, 1996; Mocala \& Ziolkowski, 1987; Tsuzuki et al., 1989) and their crystal structures have been reported by different authors for $M=\mathrm{Mg}$ (Ng \& Calvo, 1972), Ca (Bouloux et al., 1972), Mn (Mueller-Buschbaum \& Kobel, 1991a), Co (Jasper-Toennies \& Mueller-Buschbaum, 1984; Mueller-Buschbaum \& Kobel, 1991a), Ni (LeBail \& Lafontaine, 1990; Mueller-Buschbaum \& Kobel, 1991b), Cu (Lavaud \& Galy, 1972; Calvo \& Manolescu, 1973), Zn (Angenault \& Rimsky, 1968; Andreetti et al., 1984) and Cd (Bouloux \& Galy, 1969; Bouloux et al., 1972). Although the symmetry of the $M \mathrm{~V}_{2} \mathrm{O}_{6}$ structures at ambient pressure is changed from orthorhombic to triclinic, all of them belong to the brannerite or thorutite $\left(\mathrm{ThTi}_{2} \mathrm{O}_{6}\right)$ structure type. Except for $M=\mathrm{Mn}$, $M \mathrm{~V}_{2} \mathrm{O}_{6}$ transforms at high pressure to the orthorhombic columbite $\left(\mathrm{FeNb}_{2} \mathrm{O}_{6}\right)$ structure type (Gondrand et al., 1974). The high-temperature polymorph of $\mathrm{HgV}_{2} \mathrm{O}_{6}$ also has a
columbite-like structure (Mormann \& Jeitschko, 2000), which is the only columbite-like $M \mathrm{~V}_{2} \mathrm{O}_{6}$ vanadate stable at ambient pressure.

High-pressure polymorphs are usually denser (6-10\% for $M \mathrm{~V}_{2} \mathrm{O}_{6}$ phases) than their ambient pressure counterparts, and often have layered or close-packed structures. Layered structures are quite promising for applications as cathode materials. Therefore, the investigation of the high-pressure $M \mathrm{~V}_{2} \mathrm{O}_{6}$ polymorphs in addition to the ambient pressure modifications may also be useful for their possible applications. However, the crystal structures of the $M V_{2} \mathrm{O}_{6}$ compounds at high pressure have not been investigated yet, although their X-ray patterns have been reported (Gondrand et al., 1974). In this paper, we report the preparation of single crystals of a high-pressure modification of $\mathrm{CdV}_{2} \mathrm{O}_{6}$ and its crystal structure.

Two types of MO_{6} octahedra are present in the title $\mathrm{CdV}_{2} \mathrm{O}_{6}$ structure. The VO_{6} octahedra are connected via edge sharing and form zigzag chains running along the a direction (Fig. 1a). Octahedra in adjacent chains share corners and form corrugated layers separated by layers of Cd^{2+} cations; the Cd atoms lie on twofold axes. The VO_{6} octahedron is strongly distorted (Fig. 2b) and the V atom is shifted towards atom O3 away from atoms O1 and O2, due to the formation of a vanadyl bond [1.6548 (10) \AA]. As a result, the $\mathrm{V}-\mathrm{O} 2$ bond opposite the vanadyl bond is elongated to 2.3505 (10) \AA. The $\mathrm{O} 2-\mathrm{V}-\mathrm{O} 3$ angle is 167.72 (4) ${ }^{\circ}$. Bond-valence-sum (BVS) calculations give values of 5.23 and 4.87 for six- and five-coordinated vanadium, respectively (Schindler et al., 2000). This type of distortion of the coordination polyhedron is typical for pentavalent vanadium, and similar distances and angles for the VO_{6} octahedron were found, for instance, in the columbitelike structure of $\mathrm{HgV}_{2} \mathrm{O}_{6}$ (Mormann \& Jeitschko, 2000). The CdO_{6} octahedra are linked by edge sharing into a zigzag chain running along the a direction. The chains are not connected to each other (Fig. 1b). The CdO_{6} octahedra are also strongly distorted (Fig. 2a) and have three pairs of $\mathrm{Cd}-\mathrm{O}$ distances, viz. 2.1961 (10), 2.3071 (10) and 2.4311 (10) \AA. The largest $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angle is $155.82(4)^{\circ}$. BVS calculation (Brown \& Altermatt, 1985; Brese \& O'Keeffe, 1991) gives a value of 2.06, in spite of the strong distortion of the polyhedron. One may

Figure 1
The crystal structure of $\mathrm{CdV}_{2} \mathrm{O}_{6}$, showing (a) corrugated layers of VO_{6} octahedra and (b) chains of CdO_{6} octahedra.

(a)

(b)

Figure 2
Coordination polyhedra for (a) the Cd atoms and (b) the V atoms. [Symmetry codes as in Table 1; plus (v) $-x+\frac{3}{2}, y,-z+2$; (vi) $-x+\frac{3}{2}$, $y+1,-z+2$.]
speculate that this distortion is a consequence of the almost pyramidal coordination of the V atom.

One may suggest that the strong distortion of the coordination polyhedra in the high-pressure structure is a reason for the instability of this modification at ambient pressure. In the brannerite-like structure, the Cd atom has an almost regular octahedral coordination with a small difference between the equatorial and apical $\mathrm{Cd}-\mathrm{O}$ distances (2.287 and $2.199 \AA$, respectively). The coordination polyhedron of the V atom should be considered as a trigonal bipyramid with two vanadyl bonds of 1.687 and $1.708 \AA$ (Zavalij \& Whittingham, 1999). In the high-pressure structure, the V atoms have six O -atom neighbours. However, the sixth $\mathrm{V}-\mathrm{O} 2$ distance is $2.3505(10) \AA$, and it is possible to use the τ parameter (Addison et al., 1984) to distinguish between the VO_{5} squarepyramidal and trigonal-bipyramidal geometries. The τ parameter is 0.12 , indicating that, if the sixth O 2 atom is ignored, the VO_{5} polyhedron is a square pyramid. Thus, the coordination arrangement of the V atom in both $\mathrm{CdV}_{2} \mathrm{O}_{6}$ and $\mathrm{HgV}_{2} \mathrm{O}_{6}$ is a distorted octahedron. In $\mathrm{HgV}_{2} \mathrm{O}_{6}$, the VO_{6} polyhedron $(\tau=0.17)$ is very similar to that in $\mathrm{CdV}_{2} \mathrm{O}_{6}$ but the sixth V-O bond is longer ($2.442 \AA$). The main difference between the two structures arises from the coordination of the Hg atom, with two very short $(2.040 \AA)$ and four long (2.643 and $2.677 \AA) \mathrm{Hg}-\mathrm{O}$ distances. Such a coordination stabilizes a columbite-like structure, in spite of the nearly square-pyramidal coordination of the V atom. One should note that in other known columbite-like compounds both cations have a nearly regular octahedral coordination. This is not the case for $\mathrm{CdV}_{2} \mathrm{O}_{6}$ and, although the cation-cation distances are very close in both modifications, the O -atom environments for these cations are significantly different. Thus, one may conclude that the $M \mathrm{~V}_{2} \mathrm{O}_{6}$ columbite-like structure results in a strong distortion of the $M \mathrm{O}_{6}$ octahedra which may be stabilized only at high pressure.

Experimental

A mixture of CdO (99.9\%) and $\mathrm{V}_{2} \mathrm{O}_{5}(99.9 \%)$ in a $1: 1$ ratio was placed in a gold capsule and treated at 6 GPa and 1473 K in a belttype high-pressure apparatus for 60 min (heating rate of
$120 \mathrm{~K} \mathrm{~min}^{-1}$). After heat treatment, the sample was quenched to room temperature and the pressure was released slowly. The product consisted of small black single crystals suitable for X-ray crystal structure analysis. Powder X-ray diffraction revealed the crystals to be $\mathrm{CdV}_{2} \mathrm{O}_{6}$.

Crystal data
$\mathrm{CdV}_{2} \mathrm{O}_{6}$
$M_{r}=310.29$
Orthorhombic, Pnab
$a=4.9495$ (6) \AA
$b=5.6949$ (7) \AA
$c=14.1692$ (17) \AA

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: Gaussian
(JANA2000; Petříček \&
Dušek, 2000)
$T_{\text {min }}=0.314, T_{\text {max }}=0.565$
4388 measured reflections
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.028$
$S=1.19$
1349 reflections

$$
\begin{aligned}
& V=399.39(8) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=9.79 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.22 \times 0.11 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

1727 independent reflections 1349 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.020$
2 standard reflections
frequency: 120 min
intensity decay: none

> 43 parameters
> $\Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd}-\mathrm{O} 1$	2.1961 (10)	$\mathrm{V}-\mathrm{O} 2$	2.0225 (10)
$\mathrm{Cd}-\mathrm{O3}^{\text {i }}$	2.4311 (10)	$\mathrm{V}-\mathrm{O} 2^{\text {iv }}$	1.7494 (10)
$\mathrm{Cd}-\mathrm{OB}^{\text {ii }}$	2.3071 (10)	$\mathrm{V}-\mathrm{O} 2^{\text {iii }}$	2.3505 (10)
$\mathrm{V}-\mathrm{O} 1$	2.0472 (10)	$\mathrm{V}-\mathrm{O} 3$	1.6548 (10)
$\mathrm{V}-\mathrm{O} 1^{\text {iii }}$	1.7853 (10)		

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z+2$; (iii) $x+\frac{1}{2},-y+1, z$; (iv)
$x+\frac{1}{2},-y+\frac{1}{2},-z+\frac{3}{2}$.

The nonstandard setting of the Pbcn space group was used for better representation of the $\mathrm{CdV}_{2} \mathrm{O}_{6}$ structure, which is built of zigzag chains of VO_{6} octahedra arranged in crimped layers. Thus, the entire structure may be considered as stacking of $\mathrm{V}_{2} \mathrm{O}_{6}$ and Cd layers along the c axis. This was the main reason for choosing the nonstandard setting of the space group. For example, $\mathrm{Bi}_{2+x} \mathrm{Sr}_{2-x} \mathrm{CuO}_{6+d}$ crystallizes in the $A 2 / a$ space group, with cell parameters about $a=5.4 \AA, b=$ $5.4 \AA$ and $c=24.6 \AA$, and $\alpha=\beta=\delta=90^{\circ}$, which corresponds to the standard setting $C 2 / c$. Nevertheless, it is always refined in the $A 2 / a$ space group for better presentation of layer stacking.

The structure was refined isotropically to $R=0.032$ and anisotropically to $R=0.016$. Difference Fourier syntheses revealed the highest residual peaks in the vicinity of the Cd and V sites. Anharmonic displacement parameters based on the Gram-Charlier expansion of the structure factor were refined up to the fourth order. Although the depths of the negative regions in the probability density function maps were about $3-6 \%$, only a few parameters had a significance level above 3σ and the reduction of the R factor was about 0.001 . Therefore, in the final refinement cycles, all atoms were refined anisotropically. At the final stage, the occupancies of all sites were refined in turn, with deviations from unity less than 3σ in all cases. Fixed full occupancies were then used for all atoms. The use of the $I>2 \sigma(I)$ cut-off instead of $I>3 \sigma(I)$ added only eight extra observed reflections and raised the R index only slightly (0.018).

Data collection: CAD-4 Manual (Enraf-Nonius, 1988); cell refinement: CAD-4 Manual; data reduction: JANA2000 (Petríček \&

inorganic compounds

Dušek, 2000); program(s) used to solve structure: SIR2002 (Burla et al., 2000); program(s) used to refine structure: JANA2000; molecular graphics: ATOMS for Windows (Dowty, 1998); software used to prepare material for publication: JANA2000.

The authors are grateful to RFBR (grant No. 07-03-00890) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC3043). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356

Andreetti, G. D., Calestani, G., Montenero, A. \& Bettinelli, M. (1984). Z. Kristallogr. 168, 53-58.
Angenault, J. \& Rimsky, A. (1968). C. R. Acad. Sci. Ser. C, 267, 227-230.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Bouloux, J. C. \& Galy, J. (1969). Bull. Soc. Chim. Fr. pp. 736-740.
Bouloux, J. C., Perez, G. \& Galy, J. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 130-133
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2000). Acta Cryst. A56, 451-457.
Calvo, C. \& Manolescu, D. (1973). Acta Cryst. B29, 1743-1745.
Cao, X. Y., Xie, J. G., Zhan, H. \& Zhou, Y. H. (2006). Mater. Chem. Phys. 98, 71-75.

Chen, X. Y., Wang, X., Wang, Z. H., Wan, J. X., Liu, J. W. \& Qian, Y. T. (2004). Chem. Lett. 33, 1374-1375.
Dowty, E. (1998). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fuentes, A. F., Trevino, L., Martinez-de la Cruz, A. \& Torres-Martinez, L. M. (1999). J. Power Sources, 81, 264-267.

Gondrand, M., Collomb, A., Joubert, J. C. \& Shannon, R. D. (1974). J. Solid State Chem. 11, 1-9.
Jasper-Toennies, B. \& Mueller-Buschbaum, H. (1984). Z. Anorg. Allg. Chem. 508, 7-11.
Lavaud, D. \& Galy, J. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 134-135.
LeBail, A. \& Lafontaine, M. A. (1990). Eur. J. Solid State Inorg. Chem. 27, 671-680.
Mocala, K. \& Ziolkowski, J. (1987). J. Solid State Chem. 69, 299-311.
Mormann, T. J. \& Jeitschko, W. (2000). Z. Kristallogr. 216, 3-4.
Mueller-Buschbaum, H. \& Kobel, M. (1991a). J. Alloys Compd, 176, 39-46.
Mueller-Buschbaum, H. \& Kobel, M. (1991b). Z. Anorg. Allg. Chem. 596, $23-$ 28.

Ng, H. N. \& Calvo, C. (1972). Can. J. Chem. 50, 3619-3624.
Petříček, V. \& Dušek, M. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
Rao, N. S. \& Palanna, O. G. (1996). Bull. Mater. Sci. 19, 1073-1080.
Schindler, M., Hawthorne, F. C. \& Baur, W. H. (2000). Chem. Mater. 12, 12481259.

Tsuzuki, A., Kani, K., Kawakami, S., Sekiya, T. \& Torii, Y. (1989). J. Mater. Sci. Lett. 8, 1255-1256.
Wei, Y. J., Nam, K. W., Chen, G., Ryu, C. W. \& Kim, K. B. (2005). Solid State Ionics, 176, 2243-2249.
Wei, Y. J., Ryu, C. W., Chen, G. \& Kim, K. B. (2006). Electrochem. Solid State Lett. 9, A487-A489
Zavalij, P. Y. \& Whittingham, M. S. (1999). Acta Cryst. B55, 627-663.

